University of Diyala College of Engineering Dept. of Mechanical Engineering

Seminar Presentation About Laser Applications By Abeer A. Shihab

What is laser ?

How can laser be generated ?

How laser interacts with metals ?

What are the laser applications?

Definition of laser

સિંગ

LASER stands for Light Amplification by Stimulated Emission of Radiation

A coherent beam resulted which all of the photons are in phase.

Key elements in laser

- Amplifying Medium: provides transition, determines the wavelength
- Pumping : provides energy necessary for population inversion
- Optical Cavity: amplifies and produces a directional beam

Laser Generator Set-Up

3

Figure 2. Schematic set-up of continuous wave CO_2 laser. (a) The major constituents of the ma (b) initial stage of energy pumping, (c) excitation and de-excitation of the atoms in the medium le to emission of laser and (d) stimulated emission and formation of laser beam.

Before

After

E2

(ii) Spontaneous emission

(iii) Stimulated emission

Properties of Laser

Coherent (synchronized phase of light)

Collimated (parallel nature of the beam)

Monochromatic (single wavelength)

High intensity (~10¹⁴W/m²)

Laser Light

EÞ

Ordinary Light

Laser Light vs. Ordinary Light

影

彩 彩

Ê

R

R

E

ES

E

E

E

Ê

B

B

B

Electromagnetic Spectrum

Laser wavelengths are usually in the Ultraviolet, Visible or Infrared Regions of the Electromagnetic Spectrum.

8:3

The Electromagnetic Spectrum

Laser wavelengths

Laser History

E

Modes of Laser -Continuous Waves Laser (CW) -Pulse Laser

સંગ

Laser Metal Interaction

🛛 R + A+ T = 1

The predominate phenomena depends on

metal type,

- its temperature,
- surface conditions and
- light parameters

Laser Metal Interaction

The laser beam absorbed photon interacts only with the electrons

electrons give up this energy through collisions with other electrons and with lattice phonons.

If the absorbed photon has large enough energy it will remove the excited electrons from the metal

Laser Metal Interaction

The conversion of the absorbed optical energy to heat in metals in time duration of 10⁻¹³ s and involves:

E

excitation of valence and/or conduction band electrons,

electron-phonon interaction within a span of 10⁻¹¹ 10⁻¹² s,

electron-electron or electron-plasma interaction

Transferring of the Beam

E

E

B

B

E E E E E E E E

E

E

B

Laser Metal Processing Range

C.S.S.

E

B

R

en En

E

R

E

E

Eś

E

() ()

R

Long Pulse Interaction

EP

Ultra Short Pulse Interaction

E:P

Welding ,Brazing and Soldering of Dissimilar Materials

Welding, Brazing and Soldering of Dissimilar Materials

Butt joint: SS and bronze for spring inside a watch

Welding ,Brazing and Soldering of Dissin Materials Applications

Airplane cabin cooling systems,

Ê

E

Welding of Ti to AI: Problem Description

Elem	Fe	Cu	Mn	Mg	Zn	С	Ball		Property		Ti	AI		E E		
.wt. %									Yield Stress	(MPa)		275	5	5	C.V.	
ΔΙ	0.6	09	0.5	0.5	0.06		ΔΙ		Ultimate Stress (MPa)			344	11	5	E	
7.4	0.0	.00	0.0	0.0	0.00				Shear Strength (Mpa)			_	8	3		
Ti	0.06	-	-	-	_	0.0	Ti		Elongation (%)			20	2	4		5)
						8			Modules of (GPa)	Elasticity	105	6	69 J		23	
Metals		Coef. of thermal Expansion X10-6 K-1		Late heat fusic Jg-1	Latent heat fusion Jg-1		Specific heat JK-1 kg-		Thermal onductivity Vm-1 K-1	Melting point °C	Bo poi	Boiling point °C		Thermal diffusivity (cm ² /sec),		
AI		23.5 @ 0-100C		388	388		900 @25C		73 @ -100C	660	240	67	0.91		1	
Ti		8.9@ 0-100C		365	365			21.9@ 0-100C		1660	3287		0.092			

Ê

999

Ê

B

Welding of Ti to AI: Problem Description

★ Lattice structure AI FCC, Ti HCC

- ★ AI to dissolve in Ti is 13at.% from Ti rich side
- Ti to dissolve in Al is 2 at.% from Al rich side
- ★ Any additional amount of AI above 13% in Ti or Ti above 2at.% in AI form IMP (Ti₃AI, TiAI, TiAI₂ TiAI₃
- ★ Reducing of AI below 20at.% in the F.Z. is impossible via playing by any of laser parameters

Phase diagram of Ti-Al binary

Experimental Set Up

ĔŖ

E

E

R

() () ()

Laser Inlet

The Result

Laser Tissue Welding

38 83 83

Eś

Laser Cutting

A laser cut, marked and bent sushi dish by Silve in aluminium and bronze

Laser Deposition

 4.13 Laser metal deposition for coating production on agricultural cutting discs.

Laser Drilling

Ĕ

ES

3

E

E

Effects of pulse repetition rate (at 8kW peak power, 2ms pulse duration and -2 mm fpp. Effects of the focal position 10 Hz repetition rate. 0,-1,-2,-3,-4

Laser Drilling of Enamel

Es

R

Laser Drilling of Enamel

Extensive thermal damage and cracking to tooth enamel caused by 1-ns laser ablation.

Smooth hole with no thermal damage after drilling with a USPL.

સ્ટ્રિંગ

Femtosecond Laser Surgery of Cornea

Femtosecond LASIK

reshaping the cornea during LASIK procedure . B

E

B

Eś

(?)

R

影

Micromachinating

Micromachinating

For the fuel injection technology in the automotive sectors reduction of nozzle diameters are of high interest

Figure 24: Drilling in 1 mm stainless steel; details of nozzle in- and outlet as well as replica of the channel geometry.

Nanomachaining

PLD experiment for deposition of Si-based nanostructured films

Nanomachaining

Figure 14: SEM images of an array of nanojets fabricated in a 60 nm thick gold film with femtosecond laser pulses (a) and a single nanojet in detail (b).

Military Applications

missile defense system to destroy tactical ballistic missiles. the laser produces enough energy in a five-second burst to power Can destroy targets up to 600 km away

Military Applications

E

B B

E

E

B

Thank You for Patient Hearing

E

E

R

R